Analysis and Optimization of a Geothermal, Biomass, Solar Hybrid System: An Application of PV*Sol Software

Toma Patarau, Dorin Petreus, and Radu Etz

Abstract: The paper presents the techno-economic analysis and optimization of a hybrid renewable energy system composed of solar panels, batteries a geothermal generator and a biomass generator in the region of Oradea, Romania that is intended to supply a vegetable greenhouse.

Optimization and Results

It was calculated that the hybrid renewable energy system needs 14 solar panels, eight 230Ah solar batteries, and a minimum of 2kW cumulated power of the geothermal and biomass generators. The system was simulated in PV*Sol and it can be concluded that the simulations agree strongly with the calculations.

BACK-UP GENERATOR			
Output Range[kW]	0.0 - 1.8	0.0 - 2.0	0.0 - 2.2
SIMULATION RESULTS			
Consumption Not Covered by System [kWh]	0.4	0	0
PV Array Surplus [kWh]	387	651.5	973.5
Energy Produced by Back-up Gen. [kWh]	11,959.80	12,267.20	12,518.60
Solar Fraction [%]	21.2	19.4	17.2
Performance Ratio [%]	49.6	45.4	40.3
System Efficiency [%]	7.5	6.8	6.1
BATTERY			
Number	12	8	4
Total Capacity [kWh]	33.1	22.1	11
SIMULATION RESULTS			
Direct Use of Back-up Gen. Energy [kWh]	4,155.90	4,253.50	5,590.30
Consumption Not Covered by System [kWh]	0	0	1,210.20
PV Array Surplus [kWh]	189.2	651.5	1,901.10
Solar Fraction [%]	22.5	19.4	11
Performance Ratio [%]	52.8	45.4	25.8
Stratem Efficiency [0/]	0	6.8	2.0

UNIVERSITY

Operation scenario

Acknowledgement

This paper is supported through the programme "Parteneriate in domenii prioritare – PN II", by MEN – UEFISCDI, project no. 53/01.07.2014.